
Prophesy: An Infrastructure for Performance Analysis and
Modeling of Parallel and Grid Applications

Valerie Taylor
Department of Computer Science

Texas A&M University
College Station, TX 77843

Phone: 979-8455820

taylor@cs.tamu .edu

Xingfu Wu
Department of ECE

Northwestern University
Evanston, IL 60208

Phone: 847-4917378
wuxf@ece.northwestern.edu

Rick Stevens
MCS Division

Argonne National Laboratory
Argonne, IL 60439

Phone: 630-2523378
stevens@mcs.anl.gov

ABSTRACT
Performance is an important issue with any application, especially
grid applications. Efficient execution of applications requires
insight into how the system features impact the performance of the
applications. This insight generally results from significant
experimental analysis and possibly the development of
performance models. This paper present the Prophesy system, for
which the novel component is the model development. In
particular, this paper discusses the use of our coupling parameter
(i.e., a metric that attempts to quantify the interaction between
kernels that compose an application) to develop application
models. We discuss how this modeling technique can be used in
the analysis of grid applications.

General Terms
Measurement, Performance

Keywords
Performance analysis, performance modeling, grid applications,
parallel applications, and grid systems.

1. Introduction
Currently, distributed systems, especially grid systems, are
becoming available through programs such as the TeraGrid [TG],
the NASA Information Power Grid [JG99], the Alliance [AL], the
National Partnership for Advanced Computational Infrastructure
[NP], GriPhyN [GP], and the Europen Grid Effort [EG]. Grids, in
contrast to conventional parallel systems, have some unique
features that pose significant challenges in terms of performance
modeling and analysis. These unique features include:

• The resources are heterogeneous.

• The resources at the geographically different sites have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

different clocks.

• The number of resources is assumed to be a significant
number.

• Many of the resources are shared (e.g., the WANs used
to interconnect the resources), resulting in dynamic
loads.

Performance is an important issue with any application, especially
grid applications. Efficient execution of applications requires
insight into how the system features impact the performance of the
applications. This insight generally results from significant
experimental analysis and possibly the development of
performance models. This paper presents Prophesy, a web-based
performance analysis and modeling infrastructure for parallel and
grid applications. Prophesy includes an extensive database that
archives the details about the context in which the performance
data was collected as well as the performance data itself. In terms
of the clocks, the Prophesy instrumentation tool collects aggregate
information about sections of an application code; hence log files
involving timestamps are not used. Further, performance
information is collected per processor and automatically sent to
the database for archiving at the end of execution of an
application. The archival of the performance data is independent
of the application execution, so as not to hinder or impede the
execution.

The novel aspect about Prophesy is the automated modeling
component that includes conventional as well as a new techniques
for developing performance models. This paper focuses on this
modeling component, detailing how the techniques support grid
applications. In particular, the paper discusses the use of our
coupling parameter, a metric that attempts to quantify the
interaction between kernels that compose an application. The
metric is used to identify how to combine the performance models
of the kernels that compose an application into a model of the
application. We discuss how this technique can be used with grid
applications. Our future work is focused on how to incorporate
the dynamic load information into the performance models to get
better predictions.

The remainder of this paper is organized as follows. Section 2
presents the background information about Prophesy followed by
a detailed presentation of the modeling component in Section 3.
Related work is given in Section 4, followed by the paper
summary in Section 5.

13

2. Prophesy Framework
The Prophesy framework consists of three major components:
data collection, data analysis, and three central databases, as
illustrated in Figure 1. The data collection component focuses on
the automatic instrumentation of codes at the level of basic
blocks, procedures, or loops. The default mode consists of
instrumenting the entire code at the level of loops and procedures.
A user can specify that the code be instrumented at different levels
of granularity or manually insert directives for the instrumenting
tool to instrument specific segments of code. The resultant
performance data is automatically placed in the performance
database. This data is used by the data analysis component to
produce an analytical performance model at the level of
granularity specified by the user, or answer queries about the best
implementation of a given function. The models are developed
based upon performance data from the performance database,
model templates from the template database, and system
characteristics from the systems database. These models can be
used to predict the performance of the application under different
system configurations. The Prophesy interface uses web
technology to enable users from anywhere to access the
performance data, add performance data, or utilize the automated
instrumentation and modeling processes.

DATA DATABASES DATA
COLLECTION ANALYSIS

Figure 1. Prophesy framework.

2.1 Data Collections
PAIDE (Prophesy Automatic Instrumentation and Data Entry),
shown in Figure 2, is the data collection component of the
Prophesy system; the goal of PAIDE is to minimize
instrumentation overhead [WT01b]. PAIDE includes a parser
that identifies where to insert instrumentation code. PAIDE also
generates two files: (1) the call graph of the application and (2)
the locations in the code where instrumentation was inserted. The
information in these two files allow the performance data to be
directly related to the application code for code tuning. For each

execution of an application, PAIDE records the time of day and
the IP address of node 0 of the grid system used to execute the
application; this infi3rmation forms a unique identifier to allow
data from different files to be associated with the same execution.

[Source code]

................ ~ ,~.~, i~i!?.:.:::.~::::.~?

I Lnstrumented source code I
4,

• [Instmmentedexecutable]

Figure 2. PAIDE framework.

T "r'
r

2.2 Prophesy Database
Prophesy assumes that applications can be decomposed into
modules, which can be further decomposed into functions that can
be decomposed into basic units in a hierarchical manner as
depicted in Figure 3. In particular, we assume the following
meaning about each component:

* Application: refers to the complete large-scale application.

• Modules: refer to the various files that comprise the
application; it is assumed that the application designer uses
some modularity in the application design.

• Functions: refer to the different function routines that may
be contained in a given module. Users will be asked to
associate a "pure function" name with their given function
where appropriate. For example, a user may identify their
function "genffF' as the pure function FFT. Pure functions
are widely used functions such as conjugate gradient or
Gaussian elimination. Pure functions facilitate the best
implementation queries.

• Basic Units: refer to a code segment that may be of finer
granularity than a function but coarser granularity than a
basic block. For example, a segment of nested loops would
be considered one basic unit.

The Prophesy database shown in Figure 4 also has a hierarchical
organization, consistent with the hierarchical structure of the
applications. The schema given below includes all three databases
given in Figure 1: performance database, system models database
and template database. The entities in the database are organized
into four areas: application information,

14

$ II III

t i t 1 Ba ctJ it I I B cu t II # t

Figure 3. Hierarchical structure of an application

executable information, run information and performance
statistics, as described below:

• Application Information: includes one entity that gives the
application name, version number, a short description, and
owner information and password (such that only the owner
can modify or add data for a given application). Data is
placed into this entity when a new application is being
developed.

• Executable Information: includes all of the entities related
to generating an executable of an application. These entities
include details about compilers, libraries (compile time and
run time) and the control flow. Data is placed into these
entities when a new executable is being used.

• Run Information: includes all of the entities related to
running an executable, which includes the system
information and inputs used for execution. This system may
be a single processor, single parallel machine or grid
system. Data is placed into these entities for each run of a
given executable. Further, detailed information about
different systems (e.g., processor performance, node memory
subsystem, operating system, etc.) is contained in this area.

• Performance Statistics Information: includes all of the
entities related to the raw performance data collected during
execution. Performance statistics are collected for all levels
of the application hierarchy.

2.3 A u t o m a t e d M o d e l i n g
Prophesy's automated modeling component allows models to be
developed easily and stores relevant modeling information in the
database for later use. This latter feature results in a modeling
process that improves over time. Currently, Prophesy's framework
supports the following modeling techniques: curve fitting,
parameterization, and kernel coupling methods. The first two
methods are well-established techniques, for which Prophesy
facilitates the methods via automation. The last method, kernel
coupling, is enabled by Prophesy because of the significant
amount of archival data and the automation of the modeling
process. In this work, a kernel is a unit of computation that
denotes a logical entity within the larger context of an

I N
alto q !!i

Performance

Figure 4. PROPHESY Database Schema

application. The unit may be a loop, procedure, or file depending
on the level of granularity of detail that is desired from the
measurements. This method is to use kernel models to develop
full application models. In this section we describe, briefly, what
is done for curve fitting and parameterization; the coupling
method is described in Section 4, as this method relates to grid
applications.

t t 0

2.3.1 Curve Fit t ing
Curve Fitting is a method that uses optimization techniques, e.g.,
least squares, to develop a model. For this method, Prophesy uses
the empirical data found in the database. The empirical data to be
used for the fit is determined by the user. Then GNU Octave
lOCI is used to generate the resultant model. The advantage of
this method is the ease for which the analytical model is
generated; the disadvantage is the lack of exposure of system
terms versus application terms. The models resulting from curve
fitting are generally a function of some input parameters of the
application; the system performance (e.g., operation execution
time or communication performance) is lumped into the
coefficients determined by curve fitting. Hence, models resulting
from curve fitting can be used to explore application scalability
but not different system configurations.

2.3.2 Parameterization Me thod
Parameterization is a method that combines manual analysis of the
code with system performance measurements. The manual
analysis entails hand-counting the number of different operations
in the code. It is assumed that this type of analysis is done on
kernels or functions that are generally in the range of 100 lines of
code or less. With Prophesy, the manual analysis is used to
produce an analytical equation with terms grouped together such
that the equation is a function of some input variables. For
example, given a matrix-vector multiply kernel, the complexity is
quadratic in terms of the matrix rank. The manual analysis would
entail grouping the terms to produce something such as ctiN 2 +
ct2N + ct3, whereby cq, cz2 and c~3 have explicit terms representing
the application and the system and N, the matrix rank. These
terms are represented in the Prophesy database as scripts that can
be used to generate the values based upon data in the database.
Having the system and application terms represented explicitly,
one can use the resultant models to explore what happens under

15

different system configurations as well as application sizes. The
disadvantage of this method is the time required for manual
analysis. However, given that the focus is on functions or kernels
for manual analysis, the time requirement is feasible. Further, the
manual analysis is done only once per function or kernel code.
Lastly, we believe that the set of kernels will remain relatively
small as indicated by previous work identifying the large number
of applications affected by research in a fixed number of areas.

3. Kernel Coupling
Kernel coupling refers to the effect that kernel i has on kernelj in
relation to running each kernel in isolation. The two kernels can
correspond to adjacent kernels in the control flow of the
application or a chain of three or more kernels. In our previous
work we used coupling to identify parts of the application that
required performance improvement [GT99]. The coupling value
provided insight into where further algorithm and code
implementation work was needed to improve performance, in
particular the reuse of data between kernels. Current work is
focused on demonstrating how the coupling values of adjacent
pairs and chains of kernels can be used to develop analytical
models for one code [TW01, TW02]. In this section, we first
describe how coupling values are generated and then demonstrate
how it is used to develop models of applications. We also provide
data illustrating that coupling values can be reused.

3.1 Coupling Parameter
The kernel coupling parameter, C~j, quantifies the interaction
between adjacent kernels in an application. To compute the
parameter Cij, three measurements must be taken:

• Pi is the performance of kernel i alone,

• Pj is the performance ofkernel j alone, and

• Pij is the performance of kernels i and j (assuming kernel i
immediately precedes kernel j) in the application.

These measurements are done in the sequence determined by the
application. In particular, a measurement is obtained by placing a
given kernel or pair of kernels into a loop, such that the loop
dominates the execution time. Then the time required for the
application, beyond the given kernel or pair of kernels, is
subtracted such that the resultant time reflects that of only the
given kernel or pair of kernels.

We define that, the value Cij is equal to the ratio of the measured
performance of the pair of kernels to the expected performance
resulting from combining the isolated performance of each kernel.
Since Cij is the measurement of interaction between kernels, we
compute it as the ratio of the actual performance of the kernels
together to that of no interaction as given below:

e,j (i)
C#=--

e,+ej

Now, let's consider Equation I for the case of an ordered chain of
kernels. Let W be the set of all kernels in the ordered chain of k
kernels.. Assume that Cw is the coupling value of the chain, and
Pw is the performance of the chain. Then, the above equation is
modified into

Pw (2) c. = Z p '
i~w

Notice that interactions between all pairs or chains of kernels are
not necessary. The value Cw from Equation 2 represents the direct
interaction between two adjacent or chain of kernels in an
application (i.e.:, in the sense of the control flow of the
application). We group the kernel couplings into three sets:

* C w = 1: indicates no interaction between the kernels,
yielding no change in performance.

• Cw < 1: results from some resource(s) being shared between
the kernels, producing a performance gain (i.e., constructive
coupling).

• Cw > 1: occurs when the kernels interfere with each other,
resulting in a performance loss (i.e., destructive coupling).

3.2 Application Modeling
Assume that an application has four kernels (A, B, C, D) that are
executed together in one loop. Let EA, EB, Ec and ED represent
the analytical models of each of the respective kernels; these
models include the number of times the kernel is executed in the
application. The equation for the estimated application execution
time is given as follows:

T = ctE A + 13EB +"tEc + BED

Using the pair-wise performance coupling values as given in
Equation 1, the coefficients have the following values,
corresponding to the weighted average of the coupling values
containing each kernel:

cc = [(CAB * PAB) + (CDA * PDA)]/ (PAB + PDA)
= [(CAB * PAB) + (CI~c * PBC)]/(PAB + PsC)

Y = [(CBc * PBC) +(CcD * PCD)]/(PBc +PcD)
= [(Cca * Pea) + (CDA * PVA)]/(PcD + PaA)

The above is denoted as the pair-wise kernel coupling predictor.
We could also use three-kernel coupling values for which we
would use the coupling values, such as CAaC and the performance
PAne-

In [TW02], we demonstrated the advantages of using the coupling
values to estimate performance using the Nas Parallel Benchmarks
[BH95]. For BT (Block Tfidiagonal) dataset A, the four kernel
predictor had an average relative error of 0.79%, while merely
summing the times of the individual kernels resulting in an
average relative errof of 21.80%. For the SP dataset A, the four
kernel predictor had an average relative error of 14.16%, while
the summation methodology had an average relative errof of
35.43%.

One of the issues related to the coupling predictor was how many
experiments are needed to get good coupling values. In
particular, does one need coupling values for each dataset, each
system, and different number of processors. Our work in this area
has demonstrated that similar systems, such as distributed memory

16

versus shared memory, have very similar coupling values.
Further, with different number of processors, the coupling values
have very few distinct changes. In particular, significant changes
occur when the is a distinct change in the memory footprint of the
application as it scales.

3.3 Relationship to Grid Applications
As discussed previously, grid applications have some unique
charactefistcs as the execution environment consists of resources
at geographically different sites. Prophesy can be used to model
grid applications by using a combination of the paramterization
method with the coupling method. This can be done in the
following manner. First we start off with an application
decomposed into a finite set of kernels (e.g., FFT, matrix-matrix
multiply, solver, etc.) ; it is assumed that this number is small.
Second, we use the parameterization modeling technique to
develop performance models of the kernels for each of the
different systems used in the execution environment. In
particular, the parameterized technique would untilize the
different timings for compute and system operations stored in the
system database. Further, the parameterized technique would also
utilize the timings about the interconnection between systems as
well. Then, for each system, we develope a model that utilizes the
coupling values for the given system type as well as the
granularity of the dataset size. In particular, the coupling values
would identify how to combine the kernel models for each system.
The resultant models would provide insight into the overall
system performance as well as the individual system performance.
Currently, we are applying this technique to a grid cosmological
application.

4. RELATED WORK
There exist some approaches to organizing performance data by
using database techniques. For example, Snodgrass [SN88] has
developed a relational approach to monitoring complex systems
by storing the information processed by a monitor into a historical
database. The basic idea is to use historical databases to formalize
dynamic information. The SIEVE (Spreadsheet based Interactive
Event Visualization Environment) system [SG93] maintains
dependence graph information in a static data base and tracefile
information in a dynamic data base. Users may select columns
from spreadsheet and associate those with graphical objects for
display. The PDS (Performance Database Server) system [HB94]
was specifically designed with a simple tabular format that
involves displaying the data in rows (machine configuration) and
columns (numbers). It logically organizes data according to the
benchmarks themselves. Further, it only provides reference
performance of a benchmark on various machines.

Significant work has been done with developing performance
tools such as Pablo IRA93], AIMS [YS95], or Paradyn [MC95].,
and performance analysis environments, in particular PACE
[KH96] and POEMS [PO98].. These environments focus on
performance predication in contrast to Prophesy for which the
focus is on archival of data and model development.

5. Summary
Grid applications are emerging as applications are focusing on
very complex and large-scale problems. Performance of this class

of applications is important, for which the underlying systems
present some unique characteristics. In this paper, we presented
Prophesy, a framework for analyzing and modeling the
performance of parallel and grid applications. The novel aspect
about Prophesy is the automated modeling component, which
includes a method for developing models as composition of the
performance models of the kernels that compose the application.
The combination of using the coupling parameters with
parameterized models that are system dependent, allows one to
better understand what is going on within each system as well as
across systems.

6. ACKNOWLEDGMENTS
This work is supported in part by NSF NGS grant EIA-9974960,
NASA Ames, and NSF ITR grants---ITR-0086044 (GriPhyN) ,
ITR-0085952, and ITR-0225642 (OptiPuter).

7. REFERENCES
[ALl The Alliance, http://www.alliance.uiuc.edu/

[BH95] D. Bailey, T. Harris, et al., The NAS Parallel
Benchmarks, Tech. Report NAS-95-020, Dec. 1995. See also
http://science.nas, nasa. gov/So ftware/N PB/.

[TG] TeraGrid Project, http://www.teragyid.org/

[GP] GriPhN Project, http://www.griphn.or~/
[TW01] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, M. Hereld, I.

Judson, R. Stevens, Prophesy: Automating the Modeling
Process, Invited Paper, in Proc. of the 3rd International
Workshop on Active Middleware Services 2001, in
conjunction with HPDC- 10, August 2001.

[TW02] V. Taylor, X. Wu, J. Geisler, and R. Stevens, Using
Kernel Couplings to Predict Parallel Application
Performance, in Proc of the llth IEEE International
Symposium on High Performance Distributed Computing
(HPDC2002), Edinburgh, Scotland, July 24-26, 2002.

[GT99] J. Geisler and V. Taylor, Performance coupling: A
methodology for predicting application performance using
kernel performance, in Proc. of the 9 ~h SlAM Conference on
Parallel Processing for Scientific Computing, March 1999.

[SN88] R. Snodgrass, A relational approach to monitoring
complex systems, ACM Transactions on Computer Systems,
Vol. 6, No. 2, May 1988, 157-196.

[SG93] S. R. Sarukkai, and D. Gannon, SIEVE: A performance
debugging environment for parallel program, Journal of
Parallel and Distributed Computing 18, 1993, 147-168.

[HB94] R. Hockney and M. Berry, Public International
Benchmarks for Parallel Computers, PARKBENCH
Committee: Report- 1, February 7, 1994.

[RA93] D. A. Reed, R. A. Aydt, et al., Scalable performance
analysis: The Pablo performance analysis
environment. In Proc. of the Scalable Parallel Libraries
Conference, Oct. 1993.

[YS95] J. C. Yan, S. R. Sarukkai, and P. Mehra, Performance
measurement, visualization and modeling of parallel and

17

distributed programs using the AIMS toolkit, Software
Practice and Experience, Vol. 25 (4), April 1995.

[MC95] B. P. Miller, M. D. Callaghan, et al., The Paradyn
parallel performance measurement tools, IEEE Computer,
Vol. 28 (11), Nov. 1995.

[KH96] D. Kerbyson, J. Harper, et al., PACE: A toolset to
investigate and predict performance in parallel systems. In
Proc. of European Parallel Tools Meeting, Oct. 1996.

[OC] GNU Octave Homepage, http://www.octave.org.

[PO98] POEMS Performance Environment,
http://www.cs.utexas.edu/users/poems

[NP] The National Partnership for Advanced Computational
Infrastructure,, http://www.npaci.edu/

[EG] The European Grid, http://www.ggfl.nlL

[FK98] I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann, July
1998.

18

